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POSITIVE MASS THEOREM AND THE BOUNDARY
BEHAVIORS OF COMPACT MANIFOLDS WITH

NONNEGATIVE SCALAR CURVATURE

YUGUANG SHI & LUEN-FAI TAM

Abstract
In this paper, we study the boundary behaviors of compact manifolds with
nonnegative scalar curvature and nonempty boundary. Using a general ver-
sion of Positive Mass Theorem of Schoen-Yau and Witten, we prove the
following theorem: For any compact manifold with boundary and nonneg-
ative scalar curvature, if it is spin and its boundary can be isometrically
embedded into Euclidean space as a strictly convex hypersurface, then the
integral of mean curvature of the boundary of the manifold cannot be greater
than the integral of mean curvature of the embedded image as a hypersur-
face in Euclidean space. Moreover, equality holds if and only if the manifold
is isometric with a domain in the Euclidean space. Conversely, under the
assumption that the theorem is true, then one can prove the ADM mass of
an asymptotically flat manifold is nonnegative, which is part of the Positive
Mass Theorem.

0. Introduction

The structure of a manifold with positive or nonnegative scalar cur-
vature has been studied extensively. There are many beautiful results
for compact manifolds without boundary, see [16, 21, 22, 9, 10, 11]. For
example, in [16], Lichnerowicz found that some compact manifolds ad-
mit no Riemannian metrics with positive scalar curvature. In [21, 22]
Schoen and Yau proved that every torus Tn with n ≤ 7 admits no met-
ric with positive scalar curvature, and admits no non-flat metric with
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nonnegative scalar curvature. This was also proved later by Gromov
and Lawson [11] for n > 7.

For complete noncompact manifolds, the most famous result is the
Positive Mass Theorem (PMT), first proved by Schoen and Yau [23, 24]
and later by Witten [28] using spinors, see also [20, 1]. One of their
results is as follows: Suppose (M, g) is an asymptotically flat manifold
such that g behaves like Euclidean at infinity near each end, and suppose
its scalar curvature is nonnegative, then (M, g) is actually the Euclidean
space if the ADM mass of one of the ends is zero.

It is natural to ask what we can say about manifolds with boundary
and with nonnegative scalar curvature. In a recent work of Yau [30],
it was proved that if Ω is a noncompact complete three manifold with
boundary and with scalar curvature not less than −3/2c2. Suppose
one of the components of ∂Ω has nonpositive Euler number and mean
curvature is not less than c and suppose Area(∂B) ≥ c ·Vol(B) for any
ball B in Ω. Then Ω is a isometric to the warped product of the flat
torus with a half line. This is a result on the effect of mean curvature
of the boundary that can influence the internal geometry of a manifold.

In this work, we will study boundary behaviors of compact manifolds
with nonnegative scalar curvature. It turns out that the question is
related to the Positive Mass Theorem. The results in this work might
also be related to the study of the quasi-local mass defined in [2]. In
fact, it was pointed out by the referee that Theorem 1 below can be
interpreted as positivity of quasilocal mass defined by Brown and York
in [4, 5]. Hawking and Horowitz [12] also gave a similar derivation of
quasilocal mass as in [4, 5].

Moreover, a new definition of quasilocal mass for a compact spacelike
hypersurface in a time orientable spacetime has been introduced by Liu
and Yau [17] and has been proved to be positive using Theorem 1.

Consider a compact oriented three manifold Ω3 with smooth bound-
ary ∂Ω. Suppose each component Σ of the boundary has positive Gaus-
sian curvature, then Σ can be isometrically embedded in R

3. Moreover,
the embedding is unique up to an isometry of R

3, see [19, 13], for ex-
ample. We will prove:

Theorem 1. Let (Ω3, g) be a compact manifold of dimension three
with smooth boundary and with nonnegative scalar curvature. Suppose
∂Ω has finitely many components Σi so that each component has positive
Gaussian curvature and positive mean curvature H with respect to the
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unit outward normal. Then for each boundary component Σi,∫
Σi

Hdσ ≤
∫
Σi

H
(i)
0 dσ(0.1)

where H
(i)
0 is the mean curvature of Σi with respect to the outward nor-

mal when it is isometrically embedded in R
3, dσ is the volume form on

Σi induced from g. Moreover, if equality holds in (0.1) for some Σi,
then ∂Ω has only one component and Ω is a domain in R

3.

A similar result is still true in higher dimensions if we assume that
each component Σi can be realized as a strictly convex hypersurface in
the Euclidean space and if in addition Ω is spin. See Theorem 4.1 for
more details. Some results similar to Theorem 1 have also been obtained
by Miao [18].

The idea of the proof of Theorem 1 is as follows. We use the meth-
ods introduced by Bartnik [3] to glue the manifold Ω to another one
so that the resulting manifold N is asymptotically flat. This can be
accomplished as in [3] (see also [27]) by solving a parabolic partial dif-
ferential equation of some foliation, so that the mean curvatures on the
boundary of Ω and N \ Ω match along ∂Ω. Note that the manifold N
is only Lipschitz. Next, we will prove that the positive mass theorem is
still true for such a manifold, see Theorem 3.1. This theorem is believed
to be true, but the authors are unable to find an explicit reference in
the literature and it seems the proof involves some technical points. We
will give a detailed proof of the result. We should remark that a posi-
tive mass theorem of nonsmooth three-dimensional manifolds was also
obtained in [18]. After obtaining N , it can be shown that there is a
monotonicity on the difference of the integrals of the mean curvatures
of the boundary as a submanifold in Ω and as a submanifold in the
Euclidean space. Then one can conclude the theorem is true.

It is interesting to see that in some sense Theorem 1 is equivalent to
the positive mass theorem. In fact, we can prove that:

Theorem 2. Suppose (0.1) is true for any compact Riemannian
three manifold Ω with boundary satisfying the assumptions in Theo-
rem 1. Let (N, g) be an asymptotically flat manifold (in a certain sense)
with nonnegative scalar curvature which is in L1(N). Then the ADM
mass mE is nonnegative for each end E of N .

The paper is organized as follows. In §1, the equation of foliation is
derived. In §2, we will solve the equation of foliation and obtain neces-
sary estimates for later applications. In §3, we will prove a of positive
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mass theorem for a class of manifolds with Lipschitz metrics. Theorem 1
and its higher dimension analog will be proved in §4. Theorem 2 will
be proved in §5.

The authors would like to thank Professors Robert Bartnik and
Shing-Tung Yau for useful discussions and their interest in the work.
We would like to thank Professors Hubert L. Bray, Weiyue Ding and
Gang Tian for their interest in the work. Finally, we would like to thank
the referee for the references of Brown and York and for the correction
of the equality right after Lemma 3.1.

1. The equation of foliation with prescribed scalar curvature

In this section, we will derive the equation of foliation with pre-
scribed scalar curvature. The equation has been basically obtained in
[3], see also [27]. All manifolds in this work are assumed to be orientable.

Let Σ be a smooth compact manifold without boundary with dimen-
sion n− 1 and let N = [a,∞)× Σ equipped with a Riemannian metric
of the form

ds20 = dρ2 + gρ(1.1)

for a point (ρ, x) ∈ N . Here gρ is the induced metric on Σρ which is the
level surface ρ=constant. Note that for fixed x ∈ Σ, (ρ, x), a ≤ ρ < ∞
is a geodesic. Given a function R on N , we want to find the equation
for u > 0 such that

ds2 = u2dρ2 + gρ(1.2)

has scalar curvature R. Let ωi, 1 ≤ i ≤ n − 1 be a local orthonormal
coframe on Σ0. Parallel translate ωi on the direction ∂

∂ρ . Let ωn = dρ.
Let ei, 1 ≤ i ≤ n be the dual frame of ωi, and let ωij be the connection
forms. Then the structure equations of ds20 are

dωi =
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0,

and

dωij −
n∑

k=1

ωik ∧ ωkj = −1
2

n∑
k,l=1

R0ijklωk ∧ ωl.
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where R0ijkl is the curvature tensor with respect to ds20. The second
fundamental form h0ij , 1 ≤ i, j ≤ n− 1 of Σρ with respect to the normal
en = ∂

∂ρ is given by

ωni =
n−1∑
j=1

h0ijωj .(1.3)

Let ηi = ωi, 1 ≤ i ≤ n − 1 and let ηn = uωn. Then ηi is an
orthonormal coframe with respect to ds2. Let ηij be the connection
forms of ηi. Direct computations show that

ηij = ωij , 1 ≤ i, j ≤ n− 1,(1.4)

and

ηni = −(log u)iηn + u−1ωni, 1 ≤ i ≤ n− 1(1.5)

where (log u)i is the derivative of log u in the ei direction. In particular,
the second fundamental form hij of Σρ with respect to ds2 is given by

hij = u−1h0ij .(1.6)

We want to compare the curvature tensor Rijkl of ds2 with R0ijkl.
For any 1 ≤ i, j≤ n − 1, apply the Gauss equations to Σρ, noting that
the metric on Σρ induced by ds20 and ds2 are the same, we have:

Rijij = Rρ
ijij + h2ij − hiihjj(1.7)

= Rρ
ijij + u−2 ((h0ij)2 − h0iih

0
jj

)
= Rρ

ijij + u−2
(
R0ijij −Rρ

ijij

)
=

(
1− u−2)Rρ

ijij + u−2R0ijij

where Rρ
ijij is the intrinsic curvature tensor of Σρ. To compare Rnini
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with R0nini, we have

− 1
2

n∑
k,l=1

Rniklηk ∧ ηl

(1.8)

= dηni −
n−1∑
k=1

ηnk ∧ ηki

= −
n−1∑
j=1

(log u)ijωj ∧ ηn − (log u)idηn − u−2
n∑

j=1

ujωj ∧ ωni

+ u−1dωni −
n−1∑
k=1

ηnk ∧ ηki

= −
n−1∑
j=1

(log u)ijηj ∧ ηn −
n−1∑
j=1

(log u)i
(−(log u)jηn + u−1ωnj

) ∧ ηj

− u−2
n∑

j=1

ujωj ∧ ωni +

(
u−1

n−1∑
k=1

ωnk ∧ ωki −
n−1∑
k=1

ηnk ∧ ηki

)

− u−1 · 1
2

n∑
k,l=1

R0niklωk ∧ ωl

= I+II+III+IV+V.

Here (log u)ij = ej (ei(log u)). Since ωnj(en) = 0 for all j, ωnj is a linear
combination of ω1, . . . , ωn−1. The coefficient of ηn∧ηi in II is [(log u)i]2.
By (1.3), the coefficient of ηn∧ηi in III is −u−3 ∂u

∂ρh
0
ii. Moreover, by (1.5)

u−1
n−1∑
k=1

ωnk ∧ ωki −
n−1∑
k=1

ηnk ∧ ηki =
n−1∑
k=1

(log u)kηn ∧ ηki.

The coefficient of ηn ∧ ηi in IV is:

n−1∑
k=1

(log u)kηki(ei).

Hence compare the coefficients of ηn ∧ ηi in (1.8), we have

−Rnini = (log u)ii+[(log u)i]2−u−3uρh0ii+
n−1∑
k=1

(log u)kηki(ei)−u−2R0nini.
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Since
ηki(ei) = ωki(ei) = −〈∇eiei, ek〉,

n−1∑
i=1

(log u)ii +
n−1∑
k=1

(log u)kηki(ei) = ∆ρ log u,

where ∆ρ is the Laplacian on Σρ with respect to the induced metric
from ds20. Hence

n−1∑
i=1

Rnini = −u−1∆ρu+ u−3∂u
∂ρ

H0 + u−2
n−1∑
i=1

R0nini.(1.9)

where H0 is the mean curvature of Σρ with respect to the metric ds20.
Combining (1.7) and (1.9), the scalar curvature R of ds2 is given by

R = (1− u−2)Rρ + u−2
n−1∑
i,j

R0ijij + 2
n−1∑
i=1

Rnini

= (1− u−2)Rρ + u−2R0 − 2u−1∆ρu+ 2u−3∂u
∂ρ

H0

where R0 is the scalar curvature of N with respect to ds20 and Rρ is the
scalar curvature of Σρ with the induced metric. Hence u2dρ2 + gρ has
the scalar curvature R, if and only if u satisfies

H0
∂u

∂ρ
= u2∆ρu+

1
2
(u− u3)Rρ − 1

2
uR0 + u3

2
R.(1.10)

Example 1. LetN = R
3\B(1) with the standard Euclidean metric.

Then N = [1,∞)×Σ where Σ is diffeomorphic to S
2. The metric on N

is given by dρ2 + gρ, where (Σρ, gρ) is the standard sphere with radius
ρ. Suppose we want to find u with scalar curvature R = 0. Then u
satisfies:

2ρ−1
∂u

∂ρ
= u2ρ−2∆S2u+ (u− u3)ρ−2

where S
2 is the standard unit sphere. Hence we have

2ρ
∂u

∂ρ
= u2∆S2u+ (u− u3).

This is a special form of the equation derived in [3].
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Example 2. Let Σ0 be a smooth compact strictly convex hyper-
surface in Rn. Let r be the distance function from Σ0. Then the metric
on the exterior N of Σ0 is given by dr2 + gr, where gr is the induced
metric on Σr, which is the hypersurface with distance r from Σ0. The
function u with prescribed scalar curvature R = 0 is given by

2H0
∂u

∂r
= 2u2∆ru+ (u− u3)Rr

where H0 is the mean curvature of Σr, Rr is the scalar curvature of Σr

with the induced metric from R
n and ∆r is the Laplacian on Σr.

Example 3. Let N = H
3 \ B(1) with the standard hyperbolic

metric. Then N = [1,∞) × Σ where Σ is diffeomorphic to S
2. Then

the metric on N is given by dρ2 + (sinh ρ)2g0, where g0 is the standard
metric on the standard unit sphere in R

3. Suppose we want to find u
with scalar curvature R = −6. Then by a direct computation, we know
u satisfies:

sinh(2ρ)
∂u

∂ρ
= u2∆S2u+ (u− u3)(1 + 3 sinh2 ρ).

2. Solution to the equation of foliation

In this section, we will solve the equation in Example 2 in §1.
Namely:

Let Σ0 be a compact strictly convex hypersurface in R
n, X be the

position vector of a point on Σ0, and letN be the unit outward normal of
Σ0 at X. Let Σr be the convex hypersurface described by Y = X+ rN,
with r ≥ 0. The Euclidean space outside Σ0 can be represented by

(Σ0 × (0,∞), dr2 + gr)

where gr is the induced metric on Σr. Consider the following initial
value problem{

2H0 ∂u∂r = 2u2∆ru+ (u− u3)Rr on Σ0 × [0,∞)
u(x, 0) = u0(x)

(2.1)

where u0(x) > 0 is a smooth function on Σ0, H0 and Rr are the mean
curvature and scalar curvature of Σr respectively, and ∆r is the Lapla-
cian operator on Σr.
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We will solve (2.1) and show that the metric ds2 = u2dr2 + gr is
asymptotically flat outside Σ0. We will also compute the mass of ds2.
We basically follow the argument in [3], see also [27]. However, some
estimates are obtained with different methods.

Lemma 2.1. Let (x1, . . . , xn−1) be local coordinates on an open set
in Σ0. For any integer k ≥ 0 and any multi-index α there is a constant
C such that for r ≥ 1∣∣∣∣∣

(
r
∂

∂r

)k
(

∂|α|

∂xα

)(
H0(x, r)− n− 1

r

)∣∣∣∣∣ ≤ C

r2

and ∣∣∣∣∣
(
r
∂

∂r

)k
(

∂|α|

∂xα

)(
Rr(x, r)− (n− 1)(n− 2)

r2

)∣∣∣∣∣ ≤ C

r3
.

Proof. Let x be a point on Σ0 and choose local coordinates (x1, . . . ,
xn−1) near x such that ∂

∂xi
is orthonormal at x and such that ∂N

∂xi
=

ki
∂X
∂xi

. Namely, ki > 0 are the principal curvatures of Σ0 at X. Direct
computations show that at the point Y = X+ rN,

H0 − n− 1
r

= −1
r

n−1∑
i=1

1
1 + rki

= −1
r

∑n−2
i=0 bir

i∑n−1
i=0 airi

,(2.2)

and

Rr − (n− 1)(n− 2)
r2

= − 1
r2

∑
1≤i,j≤n−1, i�=j

1 + rki + rkj
(1 + rki)(1 + rkj)

(2.3)

= − 1
r2

∑n−2
i=0 dir

i∑n−1
i=0 ciri

,

where ai, bi, ci, di are smooth functions on Σ0, such that an−1 > 0 and
cn−1 > 0.

Now if (x1, . . . , xn−1) are any local coordinates near a point x0, and
if

f(x, r) =
∑p

i=0 βir
i∑q

i=0 γir
i

where βi and γi are smooth functions on Σ0 with γq > 0, then for each
j,

∂f

∂xj
=

∑p+q
i=0 β̃ir

i∑2q
i=0 γ̃ir

i
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and

r
∂f

∂r
=

∑p+q
i=0 β̂ir

i∑2q
i=0 γ̂ir

i

where β̃i, γ̃i, β̂i and γ̂i are smooth functions on Σ0 with γ̃2q > 0 and
γ̂2q > 0.

Combining these observations with (2.2) and (2.3), the results follow.
q.e.d.

Next, we will obtain preliminary estimates for the upper and lower
bounds for the solution u of (2.1).

Lemma 2.2. If u is defined for all r, then there is a constant C
independent of r such that

|u(x, r)− 1| ≤ Cr2−n

for r ≥ 1. In fact, if u is defined on [0, R), then for 0 ≤ r < R, we have[
1 + C2 exp

(
−

∫ r

0
ξ(s)ds

)]− 1
2

≤ u(x, r) ≤
[
1− C1 exp

(
−

∫ r

0
ϕ(s)ds

)]− 1
2

where

ϕ(r) = min
x∈Σ0

Rr(x, r)
H0(x, r)

> 0, ψ(r) = max
x∈Σ0

Rr(x, r)
H0(x, r)

> 0,

C1 = 1−
(
max
Σ0

u0 + 1
)−2

, C2 =
(
min
Σ0

u0

)−2
− 1,

and ξ(r) = ϕ(r) if minΣ0 u0 ≤ 1, ξ(r) = ψ(r) if minΣ0 u0 > 1.

Proof. Let

f(r) =
[
1− C1 exp

(
−

∫ r

0
ϕ(s)ds

)]− 1
2

.

Then f(0) > u0(x) for all x ∈ Σ0. For any λ > 1, we have

d

dr
(λf) =

1
2
(
λf − λf3

)
ϕ

>
1
2
(λf − λ3f3)

Rr

H0
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where we have used the fact that 0 < C1 < 1 so that f > 1, the fact that
λ > 1 and the definition of ϕ. An application of the maximum principle
then shows that u ≤ λf . Since λ > 1 is arbitrary, we have u ≤ f .
Notice that ϕ(r) = (n− 2)/r+O(r−2), it is easy to see u− 1 ≤ C ′r2−n

for some C ′, if u is defined for all r.
To obtain the lower bound for u. Suppose minΣ0 u0 ≤ 1. Let

h(r) =
[
1 + C2 exp

(
−

∫ r

0
ϕ(s)ds

)]− 1
2

.

It is easy to see that h is well-defined, h(0) = minΣ0 u0 and h < 1. Then

dh

dr
=

1
2
(h− h3)ϕ

≤ 1
2
(h− h3)

Rr

H0

where we have used the fact that h−h3 > 0 and the definition of ϕ. As
before, we can conclude that h ≤ u.

Suppose minΣ0 u0 > 1. Let

g(r) =
[
1 + C2 exp

(
−

∫ r

0
ψ(s)ds

)]− 1
2

.

Then g is well-defined because −1 < C2 < 0. Moreover, g(0) = minΣ0 u0
and g > 1.

dg

dr
=

1
2
(g − g3)ψ

≤ 1
2
(g − g3)

Rr

H0

where we have used the fact that g−g3 < 0. We can obtain the required
lower bound for u as before.

If u is defined for all r, we also have u − 1 ≥ −C ′′r2−n for some
constant C ′′ > 0 if r is large enough. q.e.d.

Because of Lemma 2.2, we have:

Lemma 2.3. (2.1) has a unique solution u for all r which satisfies
the estimates in Lemma 2.2.

We need some estimates for the metric gr. More precisely, we need
the fact that r−2gr is asymptotically equal to the standard metric on
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S
n−1. Since Σ0 is convex, the Gauss map N : Σ0 → S

n−1 is a diffeomor-
phism. Fix local coordinates (x1, . . . , xn−1) on Σ0 so that Σ0 is given
by X(x1, . . . , xn−1). Then the metric rg = rgijdxidxj on Σr is given by

rgij = ogij + r [〈Ni,Xj〉+ 〈Nj ,Xi〉] + r2bij

where ogij is the metric on Σ0 and bij is the standard metric on S
n−1 in

coordinates (x1, . . . , xn−1) via the Gauss map N. Let rg̃ij = r−2 rgij .
Then we have the following estimate. The proof is similar to that of
Lemma 2.2.

Lemma 2.4. With the above notations, for any k ≥ 0 and any
multi-index α there is a constant C such that for r ≥ 1,∣∣∣∣∣

(
r
∂

∂r

)k
(

∂|α|

∂xα

)
(rg̃ij − bij) (x, r)

∣∣∣∣∣ ≤ C

r
.

For r ≥ 1, let r = et, and so ∂
∂t = r ∂

∂r . Equation (2.1) becomes

∂u

∂t
= (rH0)−1u2∆̃ru+

1
2
(u− u3)rRrH−1

0 .(2.4)

where ∆̃r is the Laplacian on Σr with respect to the metric rg̃ij .

Lemma 2.5. Let u be the solution of (2.1), then in local coordinates
(x1, . . . , xn−1) on Σ0, for any k and α, there is a constant C such that∣∣∣∣∣

(
∂

∂t

)k
(

∂|α|

∂xα

)
(u(x, r)− 1)

∣∣∣∣∣ ≤ Cr2−n.

Proof. In local coordinates

∆̃r =
1√
rg̃

∂

∂xi

(√
rg̃ rg̃

ij ∂

∂xj

)
,

where rg̃ = det( rg̃ij). Hence

(rH0)
−1 u2∆̃ru

=
(rH0)

−1 u2√
rg̃

∂

∂xi

(√
rg̃ rg̃

ij ∂u

∂xj

)

=
∂

∂xi

[
(rH0)

−1 u2 rg̃
ij ∂u

∂xj

]
− ∂

∂xi

[
(rH0)

−1 u2√
rg̃

] [√
rg̃ rg̃

ij ∂u

∂xj

]
=

∂

∂xi
[ai(x, t, ∂u)]− a(x, t, ∂u)
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where
ai(x, t, .p) = (rH0)

−1
rg̃

ijpj

and

a(x, t, .p) =
∂

∂xi

[
(rH0)

−1√
rg̃

]√
rg̃ rg̃

iju2pj + 2 (rH0)
−1 u rg̃

ijpipj .

Here in a, u is considered to be a given function. Hence, by Lemmas 2.1,
2.2 and 2.4, for t = log r large enough,

aipi ≥ C|p|2

|ai| ≤ C ′|p|
and

|a| ≤ C ′′ (1 + |p|2)
for some positive constants C, C ′, C ′′ independent of t. By [15, Th.
V.1.1], for any t0 ≥ 1, there are constants β > 0 and C1 > 0 independent
of t0, such that

|u(x, t)− u(x′, t)|
|x− x′|β +

|u(x, t)− u(x, t′)|
|t− t′|β

2

≤ C1(2.5)

for all x �= x′ ∈ Σ0 and t �= t′ in [t0, t0 + 1]. Now consider the function
v = u− 1, we have

∂v

∂t
− (rH0)

−1 u2 rg̃
ij ∂2v

∂xi∂xj
+
(rH0)

−1 u2√
rg̃

∂

∂xi

(√
rg̃ rg̃

ij
) ∂u

∂xj

− 1
2
(
u2 + u

)
rRrH−1

0 v = 0.

By Lemmas 2.1, 2.2, 2.4 and (2.5), using the interior Schauder estimates
[15, Th. IV.10.1] or Friedmann [15, Th.1, Chap. 4], the lemma follows.

q.e.d.

As in [3], let

m =
1
2
rn−2

(
1− u−2) .(2.6)

By Lemma 2.5, it is easy to see that:
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Corollary 2.1. With the notations in Lemma 2.5, in local coordi-
nates (x1, . . . , xn−1) on Σ0, for any k and α, there is a constant C such
that ∣∣∣∣∣

(
∂

∂t

)k
(

∂|α|

∂xα

)
m

∣∣∣∣∣ ≤ C.

Direct computations show that m satisfies

∂m

∂r
= u2H−1

0 ∆rm+ 3u4r2−nH−1
0 |∇rm|2 +

(
n− 2

r
−RrH−1

0

)
m

(2.7)

where ∇r is the gradient with respect to the metric rgij . Hence
(2.7′)
∂m

∂t
= u2 (rH0)

−1 ∆̃rm+ 3u4r−1−nH−1
0 |∇̃rm|2 + (

n− 2−RrrH−1
0

)
m

where ∇̃r is the gradient with respect to the metric rg̃ij and t = log r
as before.

Let ∆ and ∇ be the Laplacian and the gradient with respect to pull
back metric on Σ0 of the standard metric on S

n−1 through the Gauss
map. Let (x1, . . . , xn−1) be local coordinates on Σ0 as in the setting of
Lemma 2.3.

Lemma 2.6. With the above notations,

∂m

∂t
=

1
n− 1

∆m+ f(x, t)

where f(t, x) is a function such that in a local coordinates, for any k
and α, there is a constant C such that∣∣∣∣∣

(
∂

∂t

)k
(

∂|α|

∂xα

)
f(x, t)

∣∣∣∣∣ ≤ Ce−t.(2.8)

Proof. Here and below f(x, t) will denote a function satisfying (2.8),
but it may vary from line to line. By Lemmas 2.1, 2.2, 2.5, it is easy to
see that

u2(rH0)−1 =
1

n− 1
+ f.(2.9)
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By Lemma 2.4 and Corollary 2.1, we have

∆̃rm = rg̃
ij ∂2m

∂xi∂xj
+

1√
rg̃

∂

∂xi

(√
rg̃ rg̃

ij
) ∂m

∂xj
(2.10)

= ∆m+
(
rg̃

ij − bij
)

rg̃
ij ∂2m

∂xi∂xj

+

[
1√
rg̃

∂

∂xi

(√
rg̃ rg̃

ij
)
− 1√

b

∂

∂xi

(√
bbij

)] ∂m

∂xj

= ∆m+ f,

where b = det(bij). Combining (2.9) and (2.10), we have

u2 (rH0)
−1 ∆̃rm =

1
n− 1

∆m+ f.(2.11)

Similarly, one can prove that

3u4r−1−nH−1
0 |∇̃rm|2 + (

n− 2−RrrH−1
0

)
m = f.

By (2.7′), the lemma follows. q.e.d.

Lemma 2.7. In local coordinates on Σ0, there is a constant m0

|m−m0|+ |∇m|(x, t) +
∣∣∣∣∂m∂t

∣∣∣∣ (x, t) ≤ Ce−t

for some constant C for all x, t.

Proof. Let a(t) =
∫

Sn−1 m(x, t). Here and below, the volume form
of S

n−1 is understood to be the standard one if there is no specification.
Let m̃(x, t) = m(x, t)− a(t). Then

da

dt
=

∫
Sn−1

f(x, t).(2.12)

where f is the function in Lemma 2.6. In particular, we have∣∣∣∣dadt
∣∣∣∣ ≤ Ce−t.
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Hence

d

dt

∫
Sn−1

m̃2 = 2
∫

Sn−1

m̃
∂m̃

∂t

=
2

n− 1

∫
Sn−1

∆m̃+ 2
∫

Sn−1

m̃

(
f − da

dt

)
≤ − 2

n− 1

∫
Sn−1

|∇m̃|2 + C1e
−t

(∫
Sn−1

|m̃|2
) 1

2

≤ −2
∫

Sn−1

|m̃|2 + C1e
−t

(∫
Sn−1

|m̃|2
) 1

2

for some constant C1 independent of t where we have used (2.12),
Lemma 2.6, the fact that

∫
Sn−1 m̃ = 0 and the first eigenvalue of S

n−1

is n− 1. From this it is easy to see that(∫
Sn−1

m̃2
) 1

2

≤ C2e
−t(t+ 1)(2.13)

for some constant C2. On the other hand,(
∂

∂t
− 1

n− 1
∆
)

m̃2 = 2m̃
(
∂m̃

∂t
− 1

n− 1
∆m̃

)
− 2

n− 1
|∇m̃|2(2.14)

≤ 2m̃
(
f − da

dt

)
≤ C3e

−t

for some constant C3 independent of t, where we have used Corollary 2.1,
Lemma 2.6 and (2.12). Hence we have(

∂

∂t
− 1

n− 1
∆
)(

m̃2 + C3e
−t) ≤ 0.

Using the mean value equality and (2.13), we have

m̃2(x, t) ≤ C4e
−t(t+ 1)

for some C4 independent of t and x. Put this back to (2.14) and iterate,
we conclude that for any 0 < α < 1, there is a constant C5 independent
of x and t such that

|m̃|(x, t) ≤ C5e
−αt.(2.15)
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Since m̃ satisfies:

∂m̃

∂t
=

1
n− 1

∆m̃+ f −
∫

Sn−1

f(2.16)

where f is the function in Lemma 2.6, by the interior Schauder estimates
[7, Chap 4, Th. 1], we conclude that for some β > 0

|m̃|2+β,Sn−1×[t,t+1] ≤ C6e
−αt(2.17)

for some constant C6 independent of t. By the definition of f in
Lemma 2.6, we have

∂m

∂t
=

1
n− 1

∆m+ f

where |f(x, t)| ≤ Ce(−1−α)t. Hence (2.13) can be improved as

(∫
Sn−1

m̃2
) 1

2

≤ Ce−t

and (2.14) can be improved as(
∂

∂t
− 1

n− 1
∆
)

m̃2 ≤ Ce−2t.

Hence, we have

|m̃|(x, t) ≤ C7e
−t(2.18)

for some constant C7 independent of x and t. Using (2.16), (2.18),
Lemma 2.6 and the interior Schauder estimate, (2.17) can be improved
as

|m̃|2+β,Sn−1×[t,t+1] ≤ C8e
−t.

Use the definition of m̃, we conclude that

|∇m|(x, t) +
∣∣∣∣∂m∂t

∣∣∣∣ ≤ C9e
−t.

From the fact that |dadt | ≤ Ce−t, we conclude that there is a constant m0
such that |a(t)−m0| ≤ Ce−t. Combining these with (2.18), the lemma
follows. q.e.d.
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Lemma 2.8. Let z1, . . . , zn be the standard coordinates on R
n and

let ρ(z) =
(∑n

i=1 z
2
i

) 1
2 . Then

u(z) = 1 +
m0
ρn−2

+ v

where m0 is the constant in Lemma 2.7, and v satisfies:

|v| = O(ρ1−n),

and
|∇0v|(z) = O

(
ρ−n(z)

)
,

where ∇0v is the Euclidean gradient of v.
Proof. By the definitions of m and m0 and the fact that |r − ρ| is

bounded, it is easy to see that |v| = O
(
r1−n

)
. Let ṽ = u− 1+ m0

r2−n . By
Lemma 2.7 and the definition of m and ṽ, in local coordinates of Σ0, we
have ∣∣∣∣ ∂ṽ∂xi

∣∣∣∣ = ∣∣∣∣ ∂u∂xi

∣∣∣∣ ≤ C1r
2−n

∣∣∣∣∂m∂xi
∣∣∣∣ ≤ C1r

1−n.(2.19)

Also

rn−2u
∂ṽ

∂r
= rn−2u

∂

∂r

(
u− 1− m0

rn−2
)

(2.20)

= u

[
∂m

∂r
− n− 2

2
rn−3

(
1− u−2)+ (n− 2)r−1m0

]
= u

[
∂m

∂r
− (n− 2)r−1(m−m0)

]
.

By (2.19), (2.20), Lemma 2.7, the fact that r ∼ ρ and the fact that
r = et, we have

|∇0ṽ| = O(r−n).(2.21)

If we use the notations in Lemma 2.1, we see that

∇0r = N.

So

∂r

∂zi
= Ni =

zi − xi
r

(2.22)
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where Ni is the i-th component of N, and X = (x1, . . . , xn) is the
position vector on Σ0. Since

v − ṽ =
m0
ρn−2

− m0
rn−2

.

Combining (2.21), (2.22) and the fact that |r−ρ| is bounded, the lemma
is proved. q.e.d.

By Lemma 2.4 and Lemma 2.5, we get |u − 1| = O(r2−n), |∇0u| =
O(r1−n), and |∇20u| = O(r−n) by a direct computation, here, ∇0 and
∇20 are the gradient and Hessian operator of the Euclidean metric re-
spectively. If we write

u2dr2 + gr =
∑
i,j

gijdzidzj .

Then direct computations show (see the computations in (2.24), (2.27)
below, for example):

|gij − δij |+ ρ|∇0gij |+ ρ2|∇20gij | ≤ Cρ2−n.(2.23)

By the result in [1], the ADMmass of the metric ds2 = u2dr2+gr is well-
defined, because the scalar curvature of ds2 is zero outside a compact
set.

Lemma 2.9. The ADM mass of the metric u2dr2 + gr is equal to
c(n)m0, where c(n) is a positive constant depending on n.

Proof. Let z be the standard metric on R
n, and consider the metric

g = u2dr2 + gr = dr2 + gr + (u2 − 1)dr2.

If we write g =
∑

i,j gijdzidzj , then

gij = δij + bij

where
∑

i,j bijdzidzj = (u2 − 1)dr2. Hence

bij = (u2 − 1)
∂r

∂zi

∂r

∂zj
.(2.24)

The ADM mass of g is given by

lim
ρ→∞

∫
Sn−1

(
∂gij
∂zi

− ∂gii
∂zj

)
ρn−2zjdV0(2.25)
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where dV0 is the standard metric on S
n−1. By (2.22)

∂2r

∂zi∂zj
=

δij
r

− zizj
r3

+O(r−2) =
δij
ρ

− zizj
ρ3

+O(ρ−2)(2.26)

∂gij
∂zi

=
∂bij
∂zi

= 2u
∂u

∂zi

∂r

∂zi

∂r

∂zj
+ (u2 − 1)

(
∂2r

∂z2i

∂r

∂zj
+

∂r

∂zi

∂2r

∂zi∂zj

)
.

(2.27)

Now

2u
∂u

∂zi

∂r

∂zi

∂r

∂zj
(2.28)

= 2
(
1 +m0ρ

2−n +O
(
ρ1−n

)) (−(n− 2)m0ρ−nzi +O
(
ρ−n

))
· (ρ−2zizj +O

(
ρ−2

))
= 2(n− 2)m0ρ−nzj +O

(
ρ−n

)
.

Here repeated indices mean summation.

(u2 − 1)
(
∂2r

∂z2i

∂r

∂zj
+

∂r

∂zi

∂2r

∂zi∂zj

)
= 2m0(n− 1)ρ−nzj +O

(
ρ−n

)(2.29)

∂gii
∂zj

=
∂hii
∂zj

= 2u
∂u

∂zj

∂r

∂zi

∂r

∂zi
+ 2(u2 − 1)

(
∂r

∂zi

∂2r

∂zi∂zj

)
(2.30)

2u
∂u

∂zj

∂r

∂zi

∂r

∂zi
(2.31)

= 2
(
1−m0ρ

2−n +O
(
ρ1−n

)) (
(n− 2)m0ρ−nzi +O

(
ρ−n

))
· (1 +O

(
ρ−2

))
= 2(n− 2)m0ρ−nzj +O

(
ρ−n

)

2(u2 − 1)
(

∂r

∂zi

∂2r

∂zi∂zj

)
= O

(
ρ−n

)
.(2.32)

Combining (2.25), (2.27)-(2.32), the lemma follows. q.e.d.
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Lemma 2.10.

lim
r→∞

∫
Σr

(H0 −H) dσr = lim
r→∞

∫
Σr

H0(1− u−1)dσr = (n− 1)ωn−1m0

where ωn−1 is the volume of the standard sphere S
n−1 and H0 and H

are the mean curvature of Σr with respect to the Euclidean metric and
the metric u2dr2 + gr respectively.

Proof. The result follows from (1.6), Lemmas 2.1, 2.8, 2.9 and the
definition of Σr. q.e.d.

We can summarize the results in Lemmas 2.3, 2.8, 2.9 and 2.10 as
follows:

Theorem 2.1. The initial value problem (2.1) has a unique solution
u on Σ0 × [0,∞) such that:

(a)

u(z) = 1 +
m0
ρn−2

+ v

where m0 is a constant and v satisfies |v| = O
(
ρ1−n

)
and |∇0v| =

O (ρ−n).

(b) The metric ds2 = u2dr2 + gr is asymptotically flat in the sense of
(2.23) with scalar curvature R ≡ 0 outside Σ0.

(c) The ADM mass mADM of ds2 is given by

c(n)mADM = (n− 1)ωn−1m0 = lim
r→∞

∫
Σr

H0(1− u−1)dσr

= lim
r→∞

∫
Σr

(H0 −H) dσr,

for some positive constant c(n), where H0 and H are the mean
curvatures of σr with respect to the Euclidean metric and ds2 re-
spectively.

If we let u0 ≡ k for k ≥ 1, it is easy to see from Lemma 2.2, that
the solution u(k) of (2.1) are uniformly bounded on [a,∞) for all a > 0.
Hence as in [3], we can solve (2.1) with initial value u−1

0 = 0. In fact,
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by Lemma 2.2, u0 satisfies:[
1− exp

(
−

∫ r

0
ψ(s)ds

)]− 1
2

≤ u0(x, r)

≤
[
1− exp

(
−

∫ r

0
ϕ(s)ds

)]− 1
2

.

This means that Σ0 is a minimal surface with respect to the asymptot-
ically flat metric u2dr2 + gr. As in [3], we have the following:

Lemma 2.11. Let

M(r) =
∫
Σr

H0(1− u−2)dσr,

then M(r) is nondecreasing.

Proof. By the Gauss equations, it is easy to see that

∂H0
∂r

= −
n−1∑
i,j=1

(
h0ij

)2
where h0ij is the second fundamental form of Σr in R

n. By direct com-
putation, we see:

d

dr

∫
Σr

H0(1− u−2)dσr

=
∫
Σr

(
H0
2(1− u−2) + 2H0u−3∂u

∂r
+

∂H0
∂r

(1− u−2)
)

dσr

= 2
∫
Σr

u−1�Σrudσr

= 2
∫
Σr

u−2|∇u|2dσr
≥ 0

where we have used the fact that u satisfies (2.1) and that

H20 −
n−1∑
i,j=1

(
h0ij

)2 = Rr.

Hence, M(r) is nondecreasing. q.e.d.

Thus, as in [3, Corollary 1.1] we have:
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Proposition 2.1. Let u be the solution of (2.1) with initial value
u−1
0 = 0. Let mADM be the ADM mass of the metric u2dr2 + gr. Then

mADM ≥ C(n)
∫
Σ0

H0dσ0

for some positive constant C(n) depending only on n.

3. Positive mass theorem on manifolds with Lipschitz metric

In order to prove the main result we need to verify that the positive
mass theorem is still true for some manifolds whose metrics may be only
Lipschitz. In this section, we always assume that Nn is an orientable
complete noncompact smooth manifold with dimension n, such that
there is bounded domain Ω ⊂ N with smooth boundary ∂Ω. We also
assume that N is spin (which is always true if n = 3) and there is a
continuous Riemannian metric g on N such that:

(i) g is smooth on N \ Ω and Ω, and is Lipschitz near ∂Ω.

(ii) The mean curvatures at ∂Ω with respect to the outward normal
and with respect to the metrics g|N\Ω and g|Ω are the same.

(iii) N has finitely many ends, each of which is asymptotically Eu-
clidean in the following sense: There is a compact set K contain-
ing Ω such that N \ K = ∪�

i=1Ei. Each Ei is diffeomorphic to
R
n \ BRi(0) and in the standard coordinates in R

n, the metric g
satisfies

gij = δij + bij ,

with

‖bij‖+ r‖∂bij‖+ r2‖∂∂bij‖ = O(r2−n)(3.1)

where r and ∂ denotes Euclidean distance and the standard gra-
dient operator on R

n, respectively.

(iv) The scalar curvature of N \ ∂Ω is nonnegative and is in L1(N).

We should remark that because of (i), the outward unit normal on
∂Ω is well-defined. Moreover, (iii) and (iv) imply that the ADM mass
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of each end of N is also well-defined by the proof in [1]. Explicitly, the
ADM mass at each end E is given by

C(n)mE = lim
r→∞

∫
S(r)

(gij,j − gjj,i) dSi

where C(n) is a positive constant, S(r) is the Euclidean sphere and dSi
is the normal surface area of S(r).

We have the following:

Theorem 3.1. Let (N, g) as above. Then mE ≥ 0 for any end E
of N . Moreover, if the ADM mass of one of ends of N is zero, then N
has only one end and N is flat.

We will use the argument of Witten [28, 20, 1]. Let us first fix some
notations. In the following, a local orthonormal frame ei, 1 ≤ 1 ≤ n
means that ei = aij

∂
∂xj

with Lipschitz functions aij which are smooth

on N \ Ω and Ω, where (x1, . . . , xn) are smooth local coordinates. By
the assumptions on g, we can always find such a local frame near each
point.

Let ei be a local orthonormal frames and ωi be the dual 1-forms. Let
ωij be the connection forms of g and let {σI} be the orthonormal base
of fibers of the spinor bundle S with respect to {ei}, ∇ be the covariant
derivative on S, then we have:

∇σI = −1
4

∑
i,j

ωij ⊗ ei · ej · σI ,

where “·” refers to Clifford multiplication. By the above notations, the
Dirac operator can be expressed in the following way:

D =
n∑
i=1

ei · ∇ei .

A spinor Ψ is said to be in W 1,2
loc (U) in some open set U if near each

point x ∈ U there is a local orthonormal frame ei, such that if σI is a
base for S as above and

Ψ =
∑
I

ΨIσI

then ΨI is in W 1,2 near x. That is to say, ΨI has weak derivatives so
that ΨI together with its weak derivatives are in L2loc. Note this is well-
defined because the transition functions from one orthonormal base to



manifolds with boundary 103

another one are Lipschitz. Note that it is also meaningful to say that
Ψ is locally Hölder or locally Lipschitz. For an open set U , the norm
W 1,2 norm |||Ψ||| of a spinor Ψ is defined as

|||Ψ|||2 =
∫
U
||∇Ψ||2 + ||Ψ||2.

Near a point x ∈ ∂Ω, choose an orthonormal frame ei such that
en = ∂

∂ρ where ρ is the signed distance function from ∂Ω. ρ > 0 outside
Ω and ρ < 0 in Ω. Moreover ei, 1 ≤ i ≤ n − 1, are chosen so that
they are obtained by parallel translation along the integral curves of ∂

∂ρ
which are geodesics normal to ∂Ω. We call this kind of frame to be an
adapted orthonormal frame. Let ωi be the dual of ei and let ωij be the
connection forms. It is easy to see that we have the following:

Lemma 3.1. With the above notations, ωij(ek) are Lipschitz for
1 ≤ i, j ≤ n− 1 and for all k. Moreover, ωij(en) = 0 for all i, j.

Under the adapted orthonormal frame, we have:

R = −2∂H
∂ρ

−
∑
i,j

hij
2 −H2 +Rρ,

where hij is components of the second fundamental form, H is the mean
curvature and Rρ is the scalar curvature of the hypersurface with dis-
tance ρ from ∂Ω. Since H matches along ∂Ω, it is Lipschitz. By this
formula we see that R is well-defined in the distribution sense. This is
important in the proof of the following Lichnerowicz formula.

Lemma 3.2. Let U be a open set of N . For any spinor η ∈
W 1,2
0 (U), Ψ ∈ W 1,2

loc (U), we have:∫
U
〈DΨ,Dη〉 =

∫
U
〈∇Ψ,∇η〉+ 1

4

∫
U
R〈Ψ, η〉,

where R is the scalar curvature of N .

Proof. Let T = ∂Ω ∩ U . Since the metric g is smooth up to the
boundary on Ω, by the standard Lichnerowicz formula applied to Ω∩U ,
we have: ∫

Ω∩U
〈DΨ,Dη〉+

∫
T
〈ν ·DΨ+∇νΨ, η〉(3.2)

=
∫
Ω∩U

〈∇Ψ,∇η〉+ 1
4

∫
Ω∩U

R〈Ψ, η〉,
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here ν is the outer normal unit vector of ∂Ω, see [1, p. 689] for example.
Let {ei} be an adapted frame near a point x ∈ T . Direct computa-

tions show that

ν · DΨ+∇νΨ

= ν ·
n−1∑
i=1

ei · (∇eiΨ
I)σI − 1

4
ν ·

n−1∑
i=1

n−1∑
s,t=1

ωst(ei)ei · es · et ·Ψ+
H

4
ν ·Ψ.

where H is the mean curvature of the level set ρ=constant with respect
to ∂

∂ρ . Hence, we have:∫
Ω∩U

〈DΨ,Dη〉+
∫
T
ν ·

n−1∑
i=1

ei · (∇eiΨ
I)σI

− 1
4

∫
T
ν ·

n−1∑
i=1

n−1∑
s,t=1

ωst(ei)ei · es · et ·Ψ+
∫
T

H

4
ν ·Ψ

=
∫
Ω∩U

〈∇Ψ,∇η〉+ 1
4

∫
Ω∩U

R〈Ψ, η〉.

By the same reasoning, we have the formula on U \ Ω,∫
U\Ω

〈DΨ,Dη〉 −
∫
T
ν ·

n−1∑
i=1

ei · (∇eiΨ
I)σI

+
1
4

∫
T
ν ·

n−1∑
i=1

n−1∑
s,t=1

ωst(ei)ei · es · et ·Ψ−
∫
T

H

4
ν ·Ψ

=
∫
U\Ω

〈∇Ψ,∇η〉+ 1
4

∫
U\Ω

R〈Ψ, η〉.

In the above, we have used the fact that the mean curvatures of T in Ω
are equal to that of N \Ω, and the unit outward normals are in opposite
directions. Adding these two equalities, we see the integrals on T are
canceled. Hence, the proof of the lemma is completed. q.e.d.

Let Ψ be a spinor in W 1,2
loc (U). Ψ is said to satisfy

D2Ψ = 0

in the weak sense in an open set U if for any spinor Φ ∈ W 1,2
0 (U),∫

U
〈DΨ,DΦ〉 = 0.
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Even though g is not smooth, however the coefficients of a weak
solution Ψ of D2Ψ = 0 with respect to an adapted frame behave well.
Namely, we have:

Lemma 3.3. Suppose Ψ ∈ W 1,2
loc (U) satisfies D2Ψ = 0 weakly in an

open set U . Then Φ is locally Hölder continuous and Ψ is in W 2,2
loc (U)

in the following sense:

(a) If x /∈ ∂Ω, then Ψ ∈ W 2,2 near x.

(b) If x ∈ ∂Ω, and if {ei} is an adapted orthonormal frame near x so
that {σI} is an orthonormal basis for S with respect to {ei} and
that Ψ =

∑
I Ψ

IσI , then ΨI is in W 2,2 and is Hölder continuous
near x.

Proof. It is sufficient to study the behavior of Ψ near a point in ∂Ω.
Let Ψ =

∑
I Ψ

IσI as in case (b). We may assume U is small enough so
that there is an adapted orthonormal frame ei in U . We claim that ΨI

satisfies the following equations:

�ΨI +
∑
J,i

AI
JieiΨ

J +
∑
J

BI
JΨ

J = 0,

in the weak sense, where, ‖AI
Ji‖L∞ + ‖BI‖L∞ ≤ C < ∞ locally, and ∆

is the Laplacian for function on N . In particular, for each fixed I, ΨI

satisfies the following equation in the weak sense:

�ΨI = f

where f = −∑
J,iA

I
JieiΨ

J − ∑
J BJ

I Ψ
J . Since Ψ ∈ W 1,2

loc (U), f ∈
L2loc(U). Since the metric is Lipschitz, in local coordinates ∆ is of di-
vergence form with coefficients being Lipschitz. Then, by the standard
theory in elliptic equations, we know that ΨI ∈ W 2,2

loc (U), see [8, Theo-
rem 8.8]. Hence by Sobolev embedding theorem, ∆ΨI is in Lp

loc(U) for
p = 2n/(n − p), and ΨI ∈ W 2,p

loc (U), see [8, Lemma 9.16]. We can then
iterate by using the Sobolev embedding theorem to conclude that the
lemma is true.

To prove the claim, let Φ =
∑

I Φ
IσI ∈ W 1,2

0 (U). Then

∇eiΨ =
∑
I

ei(ΨI)σI − 1
4

∑
k,l,I

ΨIωkl(ei)ek · el · σI
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and
∇eiΦ =

∑
I

ei(ΦI)σI − 1
4

∑
k,l,I

ΦIωkl(ei)ek · el · σI

where ωkl are the connection forms with respect to the adapted frame
ei. By Lemma 3.1

〈∇Ψ,∇Φ〉

=
∑
I

〈∇ΨI ,∇ΦI〉 − 1
4

n−1∑
i=1

∑
j,k,l,I,J

〈ΨIωkl(ei)ek · el · σI , ei(ΦJ)σJ〉

− 1
4

n−1∑
i=1

∑
j,k,l,I,J

〈ei(ΨI)σI ,ΦJωkl(ei)ek · el · σJ〉+
∑
I,J

aIJΨIΦJ

where aIJ is a bounded function. Since ei(ωkl(ei)) is smooth up to
boundary in N \ Ω and in Ω, and for 1 ≤ i ≤ n − 1 we can perform
integration by parts to conclude that

n−1∑
i=1

∫
U

∑
j,k,l,I,J

〈ΨIωkl(ei)ek · el · σI , ei(ΦJ)σJ〉

=
n−1∑
i=1

∑
IJ

∫
U

(
ei(ΨI)ΦJ

biIJ +ΨIΦJ
ciIJ

)
,

where biIJ and ciIJ are L∞ functions in U . For simplicity, we set:

n−1∑
i=1

∫
U

∑
j,k,l,I,J

〈ei(ΨI)σI ,ΦJωkl(ei)ek · el · σI〉

=
n−1∑
i=1

∑
IJ

∫
U

(
ei(ΨI)ΦJ

diIJ

)
,

here, diIJ are also L∞ functions in U . By Lemma 3.2 and the fact that
Ψ is a weak solution of D2Ψ = 0, it is easy to see that the claim is true
with

AJ
Ii = −1

4
(biIJ + diIJ),

BJ
I = aIJ +

n−1∑
i=1

ciIJ +
R
4
δIJ
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where δII = 1 and δIJ = 0 if I �= J . This completes the proof of the
lemma. q.e.d.

As a corollary, we have:

Corollary 3.1. Suppose Ψ is W 1,2 weak solution of

D2Ψ = 0

in an open set U in N . Then DΨ ∈ W 1,2
loc (U).

Proof. It is sufficient to consider the behavior of Φ near a point x in
∂Ω. We choose an adapted orthonormal frame near x as before. With
the notations as in the proof of the previous lemma, we have

DΨ =
∑
I

∇ΨI · σI − 1
4

n−1∑
i,j,k=1

∑
I

ωkl(ei)ei · ek · el · σI −Hen ·Ψ

where we have used Lemma 3.1. Here H is the mean curvature of the
level surface ρ=constant. By Lemma 3.3, first term in the above equality
is in W 1,2

loc . By Lemma 3.1, by the assumption of the smoothness of g,
we see for 1 ≤ i, k, l ≤ n − 1, ωkl(ei) is Lipschitz. By the assumption
of the mean curvature on ∂Ω, we see H is also Lipschitz on N . The
corollary follows because being in W 1,2

loc does not depend on the choice
of orthonormal frame. q.e.d.

Lemma 3.4. Suppose σ ∈ W 1,2
loc (N),

∫
N ‖σ‖2 < ∞ and Dσ = 0.

Then σ = 0.

Proof. By the assumption and Lemma 3.2, for any ξ ∈ W 1,2
0 (N), we

have:
0 =

∫
N
〈 Dσ,Dξ〉 =

∫
N
〈∇σ,∇ξ〉+ 1

4

∫
N
R〈σ, ξ〉

Let ξ = η2σ, here η is a cut-off function such that for ρ> 0,

η =

{
1 in Bρ(o)
0 outside B2ρ(o),

and
|∇η| ≤ C

ρ
.

Then, we get: ∫
Bρ

‖∇σ‖2 ≤ C

ρ

∫
N
‖σ‖2 → 0.
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Hence, σ is parallel inside and outside Ω. Thus σ = 0 outside Ω be-
cause

∫
N ||σ||2 < ∞. σ = 0 inside Ω because σ is continuous on N by

Lemma 3.3 and is parallel. This completes the proof of the lemma.
q.e.d.

Now one can proceed as in the case that g is smooth to prove the
positive mass theorem.

Proof of Theorem 3.1 Let us first prove that mE ≥ 0 for all end
E. We assume that N has only one end, the proof for the general
case is similar. Let η be a parallel spinor outside R

n with respect to the
Euclidean metric. We may extend η so that it is zero on a neighborhood
of Ω. By the asymptotic conditions on g, ||η|| is asymptotically constant,

‖Dη‖(x) = O
(
r1−n(x)

)
,(3.3)

and

||D2η||(x) = O
(
r−n(x)

)
.(3.4)

Here r is the geodesic distance function with respect to g. Let R > 0 be
large enough, then one can find spinor ΨR ∈ W 1,2(Bo(R)) where o ∈ N
is a fixed point, so that

D2ΨR = 0

in the weak sense in Bo(R) such that ΦR = η on ∂Bo(R). This is
equivalent to solve the following:

(∗)
{
D2σR = −D2η in Bo(R),
σR|∂Bo(R) = 0

One may use Lax-Milgram theorem to solve (∗). Indeed, in the Hilbert
space consisting of all spinors inW0

1,2(Bo(R)), define the sesqui-bilinear
form:

a(Φ,Ψ) =
∫
Bo(R)

〈DΦ,DΨ).

Consider the linear functional

F (Ψ) = −
∫
Bo(R)

〈DΨ,Dη〉.

It is easy to see that:
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(i) a is bounded, i.e., there is C > 0 such that:

|a(Φ,Ψ)| ≤ C|||Φ||| |||Ψ|||.

(ii) It is positive by Lemma 3.2, the fact that R ≥ 0 and the Poincaré
inequality. That is, there is δ> 0 such that:

a(Ψ,Ψ) ≥ δ|||Ψ|||2.

(iii) F is bounded.

Then by Lax-Milgram theorem [31, Sec. 7, Chap. 3], we conclude
that (∗) has a solution. By Lemma 3.3, ΨR is bounded. Hence ||ΨR||2
is in W 1,2(Bo(R)). Moreover, if f ∈ C∞

0 (Bo(R)) with f ≥ 0, then∫
Bo(R)

〈∇||ΨR||2,∇f〉 =
∫
Bo(R)

(〈∇ΨR,∇(fΨR)〉+ 〈∇(fΨR),∇ΨR〉)

− 2
∫
Bo(R)

f ||∇ΨR||2

= −1
2

∫
Bo(R)

f
(R||ΨR||2 + 4||∇ΨR||2

)
≤ 0

where we have used the Lichnerowicz formula in Lemma 3.2. Hence
||ΨR||2 is subharmonic in the weak sense. Since η is uniformly bounded,
we conclude that ΨR are uniformly bounded by the maximum principle.
Hence there is Ri → ∞ such that Ψi = ΨRi converges in W 1,2

loc (N) to Ψ
with D2Ψ = 0 in the weak sense.

We claim that Ψ is asymptotically close to η in the following sense:

||Ψ− η||(x) ≤ Cr2−n(x) log r(x)(3.5)

for some constant if r(x) is large enough, and∫
N
||∇(Ψ− η)||2 + ||D(Ψ− η)||2 < ∞.(3.6)

To prove the claim, let us assume Ω ⊂ Bo(R0) and that Ri > R0 for
all i. Then for any i, since Ψi − σ = 0 on ∂Bo(Ri), we have∫

Bo(Ri)
〈DΨi,D(Ψi − σ)〉 = 0.
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From this, it is easy to see that∫
Bo(Ri)

||D(Ψi − η)||2 ≤
∫
N
||Dσ||2.

Moreover, by Lemma 3.2 and the fact that R ≥ 0, it is easy to see that∫
Bo(Ri)

||∇(Ψi − η)||2 ≤
∫
Bo(Ri)

||D(Ψi − η)||2 ≤
∫
N
||Dσ||2.

Using (3.3) and the fact that Ψi converge to Ψ in W 1,2
loc (N) weakly, we

conclude that (3.6) is true.
On the other hand, since Ψi are uniformly bounded, there is a con-

stant C1 such that

||Ψi − η|| ≤ C1

on ∂Bo(R0). Let u ≥ 0 be a solution of ∆u ≤ −||D2η|| outside Bo(R0)
such that u ≥ C1 on ∂Bo(R1) and such that u(x) ≤ C2r

2−n(x) log r(x)
for some constant C2 > 0. Such u can be found, see for example [26].
Note that outside Bo(R0), Ψi is smooth and by the usual Lichnerowicz
formula,

∆||Ψi − η|| ≥ −||D2η||

in the weak sense on Bo(Ri) \Bo(R0). Hence

||Ψi − η||(x) ≤ u(x)

on Bo(Ri) \ Bo(R0). Note that Ψi converges pointwisely to Ψ outside
Bo(R0), hence (3.5) is true.

By Corollary 3.1, DΨ ∈ W 1,2
loc (N). Apply Lemma 3.4 to σ = DΨ

and using (3.6), we conclude that DΨ = 0.
Now choose η to be nonzero constant spinor (with respect to the

Euclidean metric) near infinity normalized so that ||η|| is asymptotically
1 at infinity. Let S(r) be the Euclidean sphere with radius r near infinity
of N and let U(r) be the interior of S(r), then by Lemma 3.2,∫

S(r)
〈ν · DΨ+∇νΨ,Ψ〉 =

∫
U(r)

||∇Ψ||2 + 1
4

∫
U(r)

R||Ψ||2.(3.7)
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where ν is the outward normal of S(r). On the other hand,∫
S(r)

〈ν · DΨ+∇νΨ,Ψ〉(3.8)

=
∫
S(r)

〈DTΨ,Ψ〉

=
∫
S(r)

〈DT (Ψ− η),Ψ− η〉+
∫
S(r)

〈DT (Ψ− η), η〉

+
∫
S(r)

〈DT η,Ψ− η〉+
∫
S(r)

〈Dη, η〉

=
∫
S(r)

〈DT (Ψ− η),Ψ− η〉+
∫
S(r)

〈Ψ− η,DT η〉

+
∫
S(r)

〈DT η,Ψ− η〉+
∫
S(r)

〈Dη, η〉

where DT =
∑n−1

i=1 ei∇ei , with ei to be orthonormal and tangential to
S(r). Here we have used the fact thatDT is self-adjoint on the boundary.

By (3.5) and (3.6), for each r large enough, we may choose r′∈(r, 2r),
such that:∣∣∣∣∣

∫
S(r′)

〈DT (Ψ− η),Ψ− η〉
∣∣∣∣∣

≤
∫
∂B′

r

‖〈DT (Ψ− η),Ψ− η〉‖

=
1
r

∫
U(2r)\U(r)

‖〈DT (Ψ− η),Ψ− η〉‖

≤ 1
r

(∫
U(2r)\U(r)

|〈DT (Ψ− η)|2
) 1

2
(∫

U(2r)\U(r)
||Ψ− η||2

) 1
2

≤ Cr1−
n
2 log r.

Thus, we see that we can find ri → ∞ such that

lim
i→∞

∫
S(ri)

〈DT (Ψ− η),Ψ− η〉 = 0.(3.9)

By (3.5) and (3.3), we also have

lim
i→∞

∫
S(ri)

〈Ψ− η,DT η〉+
∫
S(ri)

〈DT η,Ψ− η〉 = 0.(3.10)
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Finally, by the argument in [1, p. 691–692], we can prove that

lim
i→∞

∫
S(ri)

〈Dη, η〉 = C(n)mE

for some positive constant C(n) depending only on n. Combining (3.7)-
(3.10), we conclude that mE ≥ 0.

Suppose the mass of some end E1 is zero. Suppose N has at least
two ends E1, E2. Then we may choose η such that η is almost parallel
but nonzero in E1 and η is zero on E2 and other ends. By the above
arguments, we conclude that there is a spinor Ψ which is asymptotically
close to η near infinity. Moreover, Ψ is parallel, namely Ψ is smooth
and parallel in the usual sense in the interior and exterior of Ω. By
Lemma 3.3, Ψ is continuous. This is impossible. Therefore N has only
one end. By choosing enough linearly independent η and by constructing
continuous parallel spinors from η, we can conclude as in [1] that the
curvature of N is zero both inside and outside Ω. This completes the
proof of the theorem. q.e.d.

4. Compact manifolds with boundary and with nonnegative
scalar curvature

In this section, we will use the results in Sections 2 and 3 to study
the boundary behaviors of a compact Riemannian manifold (Ωn, g) of
dimension n with smooth boundary ∂Ω and with nonnegative scalar
curvature. First we need the following lemma.

Lemma 4.1. Let M be a smooth differentiable manifold and Ω be a
domain in M with smooth boundary. Suppose g is a Riemannian metric
on M satisfying the following:

(a) gM\Ω and gΩ are smooth up to the boundary ∂Ω and g is Lipschitz
near any point on ∂Ω.

(b) The sectional curvature of M \ Ω and Ω are zero near ∂Ω.

(c) ∂Ω has the same second fundamental form with respect to gM\Ω
and gΩ (with respect to the same normal direction).

Then g is C2 in a neighborhood of ∂Ω.
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Proof. Let p ∈ ∂Ω and let ρ be the signed distance function from
∂Ω. Near p, the metric g can be expressed in the form:

g = dρ2 +
n−1∑
i,j=1

gijdθidθj ,

where
∑n−1

i,j=1 gij(ρ, θ)dθidθj is the induced metric on the level sets of ρ
and (θ1, . . . , θn−1, ρ) are the local coordinates. It is sufficient to prove
that the components gij are in C2. Note that partial derivatives of gij
of all order with respect to θ exist.

Let
∑n−1

ij hijdθidθj be the second fundamental form on the level
surface ρ=constant with respect to the unit normal ∂/∂ρ. Then for
ρ �= 0, we have that

hij = −
〈
∇ ∂

∂θi

∂

∂θj
,
∂

∂ρ

〉
= −Γnij
=

1
2
∂gij
∂ρ

where Γcab are the Christoffel symbols and ρ is considered to be the n-th
coordinate. Hence

∂gij
∂ρ

= 2hij .(4.1)

By the assumption that hij agrees on ∂Ω, we see that ∂gij/∂ρ is con-
tinuous up to ∂Ω. Hence gij is C1 near p.

By (4.1), for ρ �= 0

∂2gik
∂ρ∂θj

=
∂2gik
∂θj∂ρ

= 2
∂hik
∂θj

.

Since hij agrees on ∂Ω and g is smooth up to the boundary when re-
stricted on Ω or on M \Ω, we conclude that ∂2gik/∂ρ∂θj is continuous
near p.

Next, we want to show ∂2gik

∂ρ2 is also continuous. For ρ �= 0, using the
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fact that the sectional curvature is zero near p, we have

∂hij
∂ρ

= − ∂

∂ρ

〈
∇ ∂

∂θi

∂

∂θj
,
∂

∂ρ

〉
= −

〈
∇ ∂

∂ρ
∇ ∂

∂θi

∂

∂θj
,
∂

∂ρ

〉
= −

〈
∇ ∂

∂θi

∇ ∂
∂ρ

∂

∂θj
,
∂

∂ρ

〉
= − ∂

∂θi

〈
∇ ∂

∂ρ

∂

∂θj
,
∂

∂ρ

〉
+

〈
∇ ∂

∂ρ

∂

∂θj
,∇ ∂

∂θi

∂

∂ρ

〉
=

〈
∇ ∂

∂θj

∂

∂ρ
,∇ ∂

∂θi

∂

∂ρ

〉
= gksglshikhis

where (gij) is the inverse of (gij). Combining this with (4.1), we see
that ∂2gij

∂ρ2 is continuous. Hence g is in C2. q.e.d.

Remark. We can prove g is actually C∞ by the same argument.

Let (Ωn, g) be a Riemannian manifold of dimension n with compact
closure and with smooth boundary. Let us first consider the case that
n > 3. We assume the following:

(i) ∂Ω has finitely many components Σi, 1 ≤ i ≤ k.

(ii) The mean curvature H of Σi with respect to the outward normal
is positive.

(iii) There is an isometric embedding ιi : Σi → R
n such that Σi is a

strictly convex closed hypersurface in R
n. Here we identify (Σi, g)

with its image with the metric induced by the Euclidean metric
in R

n.

(iv) Ω is spin.

We may extend Ω across ∂Ω to a smooth manifold Ω̃ which contains
Ω. By the embedding of Σi, we can define a diffeomorphism from a
neighborhood of Σi in Ω̃ to a neighborhood of Σi in R

n by mapping the
set with distance r from Σi in Ω̃ to the set with distance r from Σi in
R
n, so that the part near Σi which is outside of Ω in Ω̃ will be mapped

into an open set which is outside of Σi in R
n.
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Theorem 4.1. Let (Ωn, g) be a compact manifold with smooth
boundary and with nonnegative scalar curvature and n > 3. Suppose Ω
satisfies conditions (i)–(iv). Then for each boundary component Σi,∫

Σi

Hdσ ≤
∫
Σi

H
(i)
0 dσ(4.2)

where H
(i)
0 is the mean curvature of Σi in R

n with respect to the outward
normal. Moreover, if equality holds in (4.2) for some i, then ∂Ω has only
one boundary component and Ω is a domain in R

n.

To prove the theorem, let us fix some notations. For each i, we may
suppose Σi is a strictly convex hypersurface in R

n. For simplicity, let
us denote Σi by Σ0 and H

(i)
0 by H0. In the setting as in Section 2, let

u be the solution of (2.1) with initial data u(x, 0) = H0(x)/H(x) which
is positive by (ii) and (iii).

Lemma 4.2. The function

m(r) =
∫
Σr

H0(1− u−1)dσr

is nonincreasing in r, where H0 is the mean curvature of Σr in R
n.

Proof. Let h0ij be the second fundamental form of Σr with respect
to the Euclidean metric. Then by the Gauss equations, it is easy to see
that

∂H0
∂r

= −
n−1∑
i,j=1

(
h0ij

)2
.

Since u satisfies (2.1), we get:
d

dr

∫
Σr

H0(1− u−1)dσr

= −
∫
Σr

n−1∑
i,j=1

(
h0ij

)2 (1− u−1)dσr +
∫
Σr

u−2H0
∂u

∂r

+
∫
Σr

H20 (1− u−1)dσr

=
∫
Σr

H20 −
∑
i,j

(
h0ij

)2 (1− u−1) + ∆ru+
1
2
(u−1 − u)Rr

 dσr

= −1
2

∫
Σr

Rru−1(1− u)2

≤ 0.
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where ∆r is the Laplacian on Σr and Rr is the scalar curvature of Σr

with respect to the induced metric in R
n (which is the same as the

metric induced by g). Here we have used the fact

H20 −
∑
i,j

(h0ij)
2 = Rr.

Thus, we see that m(r) is nonincreasing. q.e.d.

We are ready to prove the theorem.

Proof of Theorem 4.1. Using the above method, we can attach each
boundary component Σi to the exterior of a convex hypersurface in R

n,
which is denoted by Ei. On each Ei, we construct the metric given by
gi = u2i dr

2+ gr with initial data H
(i)
0 /H as in Theorem 2.1. Denote the

resulting manifold by N . Let gN be the metric on N defined by gN = g
in Ω and gN = gi on each Ei. Since Ω is spin, N is spin. By Theorem 2.1
and (1.6), N satisfy the assumptions in Theorem 3.1. Hence the mass
mEi is nonnegative for each i. By Theorem 2.1(c) and Lemma 4.1, we
conclude that (4.2) is true for all i.

Suppose equality holds in (4.2) for some i, then the mass of Ei must
be zero. Hence N has only one end and N is flat by Theorem 3.1.
Therefore ∂Ω has only one component and Ω is flat. By (1.7), we have
u ≡ 1. On the other hand, we note that n > 3 and the boundary
is strictly convex in R

n. By the proof in [6, §60], we know that the
second fundamental forms of the boundary of Ω with respect to g and
the Euclidean metric (in the same normal direction) are equal. By
Lemma 4.1, we see the metric on N is actually C2. Since u ≡ 1, N
is the Euclidean space outside a compact set. By volume comparison
theorem, N is isometrically to R

n which implies that Ω is a domain in
R
n. This completes the proof of the theorem. q.e.d.

In case n = 3 then condition (iv) mentioned above is automatically
satisfied. Also, by a well-known result, see [19] for example, condition
(iii) is equivalent to the condition that Σi has positive Gaussian cur-
vature. It is also well-known that the embedding is unique up to an
isometry in R

3. Hence in this case we have:

Theorem 4.2. (Ω3, g) be a Riemannian manifold of dimension 3
with compact closure with smooth boundary and with nonnegative scalar
curvature. Suppose Ω satisfies conditions (i)–(ii). Moreover, suppose
each boundary component of Σi has positive Gaussian curvature. For
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each boundary component Σi, we have∫
Σi

Hdσ ≤
∫
Σi

H
(i)
0 dσ(4.3)

where H
(i)
0 is the mean curvature of Σi with respect to the outward nor-

mal when it is isometrically embedded in R
3. Moreover, if equality holds

in (4.3) for some i, then ∂Ω has only one component and Ω is a domain
in R

3.

Proof. The proof of (4.3) is the same as before. Using the same
notations as in the proof of Theorem 4.1, by the same argument as in
the proof of Theorem 4.1, if equality holds in (4.3) for some end, then
∂Ω has only one component and N is flat with u ≡ 1. It remains to
prove that Ω is actually a domain in R

3.
Since u ≡ 1, the mean curvatures of ∂Ω with respect to g and the

Euclidean metric are equal. Since ∂Ω is now a strictly convex surface in
R
3, it is easy to see that the proof in [14, Theorem 6.2.8] can be carried

over and we can conclude that the second fundamental forms of ∂Ω with
respect to g and the Euclidean metric are equal. Hence we can conclude
from Lemma 4.1 as before that Ω is a domain in R

3. This finishes the
proof of the theorem. q.e.d.

By the result of Weyl [29], the boundary component Σi of Ω in
Theorem 4.2 satisfies

4K ≤
(
H
(i)
0

)2 ≤ sup
Σi

(
4K −K−1∆K

)
where ∆ is the Laplacian of Σi with metric induced by g, K is the
Gaussian curvature of Σi and H

(i)
0 is the mean curvature of Σi when it

is embedded in R
3. Hence we have the following corollary.

Corollary 4.1. Let (Ω3, g) be a compact manifold of dimension 3
with boundary and with nonnegative scalar curvature. Suppose Ω satis-
fies conditions (i)–(ii). Moreover, suppose each boundary component of
Σi has positive Gaussian curvature K. Then

1
Area (Σi)

∫
Σi

Hdσ ≤
[
sup
Σi

(
4K −K−1∆K

)] 1
2

.

Moreover, if equality holds for some Σi, then ∂Ω has only one component
and Ω is a domain in R

3.
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5. An equivalent statement of the positive mass theorem

In the previous section, we obtain Theorem 4.2 from the positive
mass theorem: Theorem 3.1. In this section, we want to show that one
can obtain the first part of the positive mass theorem by assuming that
Theorem 4.2 is true. More precisely, let (N, g) be a complete noncom-
pact manifold with finitely many ends with the following properties:

(i) N has nonnegative scalar curvature R which is in L1(N).

(ii) Each end E is diffeomorphic to the exterior of some compact set
in R

3, so that the metric g =
∑3

i,j=1 gijdxidxj is asymptotically
flat in the sense that

gij = δij + b̃ij

such that

|̃bij |+ r|∇0b̃ij |+ r2|∇0∇0b̃ij | = O(r−1).

where r is the Euclidean distance from the origin and ∇0 is the
derivatives with respect to the Euclidean metric.

Then we have:

Theorem 5.1. Suppose (4.2) is true for any compact Riemannian
three manifold Ω with boundary satisfying the assumptions in Theo-
rem 4.2. Let (N, g) be as above, then the ADM mass of each end of N
is nonnegative.

Proof. By the result of [25], it is sufficient to prove the theorem
under the stronger assumption that at each end E,

gij =
(
1 +

2mE

r

)
δij + bij ,(5.1)

|bij |+ r|∇0bij |+ r2|∇0∇0bij |+ r3|∇0∇0∇0bij |
+ r4|∇0∇0∇0∇0bij | = O(r−2)

where mE is a constant, and r is the Euclidean distance from the origin.
Namely, it is sufficient to prove that mE ≥ 0 under the additional
condition (5.1).

In fact, by [25], given any ε > 0, one can construct a new metric g̃
on N with zero scalar curvature such that near infinity at each end E,
the metric g̃ is of the form:

g̃ij = ϕ4δij ,
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where ϕ satisfies

ϕ = 1 +
m̃E

r
+ h.

Here m̃E is a constant and |h| = O(r−2). Moreover, m̃E ≤ mE+ε. Since
the scalar curvature of g̃ is zero, ϕ and hence h is harmonic outside
a compact set of the Euclidean space. By the gradient estimates of
harmonic functions on Euclidean space, we conclude that g̃ satisfies
(5.1).

We assume that N has only one end, and denote mE by m. The
general case can be proved similarly. The proof of Theorem 5.1 are
divided into several steps.

Step 1. We want to compute the Gaussian curvature K of S(r) with
respect to the metric g. Here S(r) is the Euclidean sphere of radius r.

Let Y = Y(ζ1, ζ2) be local parametrization of the standard unit
sphere S = S(1), here Y = (y1, y2, y3). Then local parametrization for
the standard S(r) is given by

X = rY.

Here and below, i, j . . . are from 1 to 3, and α, β . . . are from 1 to 2.
Now

∂xi
∂r

= yi(5.2)

and
∂xi
∂ζα

= r
∂yi
∂ζβ

.(5.3)

Let us first compute the metric on S(r). Since

∂

∂ζα
=

∂xi
∂ζa

∂

∂xi
,

we have

ταβ = g

(
∂

∂ζα
,

∂

∂ζβ

)
(5.4)

= gij
∂xi
∂ζα

∂xj
∂ζβ

= r2
[(

1 +
2m
r

)
δij + bij

]
∂yi
∂ζα

∂yj
∂ζβ

= r2
[(

1 +
2m
r

)
aαβ + bij

∂yi
∂ζα

∂yj
∂ζβ

]
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where aαβ is the standard metric on S(1) in the coordinates (ζ1, ζ2).
Hence

τ = τ11τ22 − τ212(5.5)

= ar4
(
1 +

2m
r

)2
(1 + f)

where a = det(aαβ) and f is a smooth function which satisfies

|f |+ |∂f |+ |∂2f |+ |∂3f |+ |∂4f | = O
(
r−2

)
.(5.6)

∂ denotes the partial derivatives with respect to ζα. Moreover, |∂f∂r | =
O(r−3). Here and below f always denotes a smooth function, but the
meaning of f may vary from line to line. The function f in (5.5) satisfies
(5.6) because of the assumptions on bij and (5.3). The inverse of (ταβ)
is given by

ταβ = r−2
(
1 +

2m
r

)−1 (
aαβ + f

)
(5.7)

where (aαβ) = (aαβ)−1 and f also satisfies (5.6). Let Γγαβ and Γ̃γαβ be
the Christoffel symbols of S(r) with induced metric ταβ and that of the
standard unit sphere S in the coordinates ζ. Then

Γγαβ = Γ̃γαβ + f(5.8)

with
|f |+ |∂f |+ |∂2f |+ |∂3f | = O

(
r−2

)
,

and

∂Γγαβ
∂ζδ

=
∂Γ̃γαβ
∂ζδ

+ f(5.9)

with
|f |+ |∂f |+ |∂2f | = O

(
r−2

)
.

Hence the Gaussian curvature K of S(r) with metric induced by g is

K = −τ−111
[(
Γ212

)
1
− (

Γ211
)
2
+ Γ112Γ

2
11 + Γ212Γ

2
12 − Γ211Γ

2
22 − Γ111Γ

2
12

](5.10)

= −τ−111 (−a11 + f)

= r−2
(
1 +

2m
r

)−1
(1 + f)
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with
|f |+ |∂f |+ |∂2f | = O

(
r−2

)
.

Step 2. We want to show that the mean curvature H on S(r) is
positive for r large enough. Moreover, we want to compute the integral
of H over S(r).

Let H be the mean curvature of S(r) with respect to the outward
normal N in the metric g. Let A(r) be the area of S(r). Then by the
first variational formula and (5.5)∫

S(r)

〈
∂

∂r
,N

〉
Hdσr = A′(r)

= (2r + 2m)
∫

S(1)
(1 + f)

1
2dσ0 +O(r−1)

= 8π(r +m) +O(r−1)

where dσr is the volume form of S(r) with metric induced by g and dσ0
is the volume form of the standard unit sphere.

Note that
∂

∂r
=

∂xi
∂r

∂

∂xi
=

xi
r

∂

∂xi

and the gradient of r with respect to g is

∇r = gij
∂r

∂xi

∂

∂xj
= gij

xi
r

∂

∂xj

one obtains 〈
∂

∂r
,∇r

〉
= 1(5.11)

and

|∇r|2 = gij
∂r

∂xi

∂r

∂xj
= 1− 2m

r
+ h(5.12)

where h = O(r−2). Since S(r) is the level surface of the function r,
N = |∇r|−1∇r. We have

∫
S(r)

|∇r|−1Hdσr =
∫

S(r)

〈
∂

∂r
,N

〉
Hdσr = 8π(r +m) +O(r−1).

(5.13)
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For any point x on S(r), choose an orthonormal frame ei with respect
to g such that e1, e2 are tangential and e3 is the unit outward normal.
Moreover, assume the second fundamental form hαβ is diagonalized at
x. By the Gauss equations,

h11h22 = K −R1212

where Rijij is the curvature tensor of N . By the asymptotic behavior
of g, we have |Rijij | = O(r−3). By (5.9), we conclude that

h11h22 > 0,

if r is large enough and so h11 and h22 are of the same sign. Hence H is
either everywhere positive or everywhere negative when r is large. By
(5.12), we must have H > 0.

Since H > 0 for r large enough, we may apply mean value theorem
and use (5.11), we have∫

S(r)
Hdσr = 8πr +O(r−1).(5.14)

Since the Gaussian curvature of S(r) is positive for r large enough,
(S(r), g) can be embedded isometrically in R

3. Let H0 be its mean
curvature in R

3.
Step 3. We want to estimate H0. Note that H20 ≥ 4K, and by [29],

we have

4K ≤ H20 ≤ sup
S(r)

(
4K −K−1∆K

)
,(5.15)

where ∆ is the Laplacian of S(r) with metric induced by g.

K−1∆K = K−1
[
ταβ

∂2K

∂ζα∂ζβ
+

1√
τ

∂

∂ζα

(√
τταβ

) ∂K

∂ζβ

]
(5.16)

= O(r−4)

because by (5.9)

∂2K

∂ζα∂ζβ
= r−2

(
1 +

2m
r

)−1 ∂2f

∂ζα∂ζβ
= O(r−4).

Combining (5.9), (5.14) and (5.15) we have

H0 =
2
r
− 2m

r2
+O(r−3).
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Hence by (5.5)

∫
S(r)

H0dσr =
(
2
r
− 2m

r2
+O(r−3)

)
· r2

(
1 +

2m
r

)(
4π +O

(
r−2

))(5.17)

= 8π(r +m) +O(r−1).

Step 4. We can now conclude the proof of the theorem. Let Ωr

be the domain in N so that ∂Ωr is S(r). Then Ωr has nonnegative
scalar curvature, ∂Ωr has positive mean curvature and positive Gaussian
curvature. By assumptions, (4.2) is true for ∂Ωr. Combining with (5.13)
and (5.16) we have

0 ≤
∫

S(r)
(H0 −H) dσr

= 8πm+O(r−1).

Let r → ∞, we have m ≥ 0. q.e.d.
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